Indexed by:
Abstract:
A new phosphidation route based on a solvothermal method is demonstrated for the deposition of Ni2P on CdS nanorods photocatalyst with NaBH4 as a crucial reactant and (H2PO2)- as dissolvable P precursor, which leads to a highly crystallized and well contacted Ni2P on CdS in an Ohmic-contact model. On the optimized sample (2%Ni2P/CdS), as high as 1.18 mmol·h-1 H2 evolution rate can be obtained over 50 mg sample, corresponding to an apparent quantum efficiency of 56% (under λ = 435 nm irradiation). The activity is significantly higher than the samples prepared by conventional phosphidation processes and the classical Pt (2%) modified CdS. The remarkable HER performance can be ascribed to the loading of intimately contacted Ni2P, which can promote the separation of photoinduced charge carriers and simultaneously decreases the overpotential for H2 evolution. Furthermore, a reservoir role for photoinduced e- was observed on the deposited Ni2P beyond as a cocatalyst. © 2020 Elsevier B.V.
Keyword:
Reprint 's Address:
Email:
Source :
Applied Catalysis B: Environmental
ISSN: 0926-3373
Year: 2021
Volume: 281
2 4 . 3 1 9
JCR@2021
2 0 . 3 0 0
JCR@2023
ESI HC Threshold:117
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count: 104
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: