Indexed by:
Abstract:
Soil arsenic (As) fractionation and its bioaccessibility are two important factors in human health risk assessment. However, data related to the impact of As minerals on the bioaccessibility with human gut microbiota involvement are scarce. In this study, speciation analysis was determined using HPLC-ICP-MS and XANES after incubation with colon microbiota from human origin, in combination with sequential extraction. Significant increase of colon As bioaccessibility was contributed primarily from As associated with amorphous and crystalline Fe/Al (hydr)oxides. We found a high degree of transformation at higher bioaccessibility (ave. 40 % of total As), which was predominantly present as liquid-phase As. In contrast, As transformation occurred mainly in the solid phase at lower bioaccessibility (< 5%), especially for soils containing As-S species. XANES spectroscopy revealed that As(III) increased by about 20 % in soil residues. Finally, the excreted As may be predominantly in association with (alumino)silicate minerals by SEM-EDX. It inferred that the priority sequence in As transformation by human gut microbiota was dissolved As(V), As(V) sorbed to mineral surfaces, crystalline As(V)-bearing minerals and As sulfides. This study will shed new light on the role of As-bearing minerals in evaluating health risks from soil As exposure. © 2020 Elsevier B.V.
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Hazardous Materials
ISSN: 0304-3894
Year: 2021
Volume: 401
1 4 . 2 2 4
JCR@2021
1 2 . 2 0 0
JCR@2023
ESI HC Threshold:105
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count: 19
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: