Indexed by:
Abstract:
In this paper, a new multi-vehicle formation control method based on second order terminal sliding mode control (SOTSMC) is proposed. The bounded disturbances and uncertainties from modelling and external factors such as gusts and vortices are considered. The conventional sliding mode formation controllers are also investigated and designed. To improve the performance of integral sliding mode controller (ISMC), especially chattering phenomenon and finite-time stability, a second order non-singular terminal sliding mode surface based on an integral sliding surface is introduced to ensure that the nonlinear formation system converges to sliding mode surface from arbitrary initial states in finite time. The Lyapunov stability is proved and total converge time is calculated. Finally, to verify the performance of the proposed SOTSMC formation controller, a comparison between the ISMC and the proposed method is conducted in the simulations with a formation consisting of two followers and one leader which tracks two different prescribed paths. © 2019, ICIC International. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Source :
International Journal of Innovative Computing, Information and Control
ISSN: 1349-4198
Year: 2019
Issue: 6
Volume: 15
Page: 2341-2353
1 . 3 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count: 21
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: