Indexed by:
Abstract:
近年来, 对热催化剂在黑暗常温常压和不添加其他化学品和能源的条件下降解有机污染物的研究取得了长足的进步, 受到了学术界和工业界的广泛关注. 与其他高级氧化过程相比, 该方法在处理生活和工业废水时具有操作简便和节约成本等优势. 但截止目前, 对其催化机理的研究尚有争议. 本综述首次系统总结了目前报道的各种热催化机理, 可为理性设计新型高效热催化剂提供理论指导, 从催化材料、催化活性和催化机理三个方面提出发展热催化剂过程中面临的挑战,并对其在黑暗氛围条件下处理污染废水的可行性进行了展望. 和传统的多相催化反应一样, 黑暗氛围条件下发生的热催化反应也分为五步, 即反应物扩散到催化剂表面、反应物吸附到催化剂表面、发生在催化剂表面的催化反应、产物从催化剂表面脱附、以及产物从界面区域扩散到主体溶液. 根据第四步反应过程的不同, 可将黑暗氛围条件下的热催化反应分为四类: 表面电子传递机理、跳跃传导模型机理、Mar-van-Krevelen机理、以及自由基链自氧化机理.
对于表面电子传递机理, 吸附的有机污染物将自身电子通过催化剂导带或氧化还原对注入催化剂, 由此得到被捕获电子和被部分氧化的有机污染物阳离子. 随后被捕获电子与吸附氧反应生成活性氧物种, 由其导致有机污染物的降解. 跳跃传导模型机理类似于光催化机理, 当催化剂受到等于或高于禁带宽度的能量时, 自身的价带电子被激发到导带, 在价带留下空穴. 空穴可直接氧化水生成羟基自由基. 同时, 导带电子可以和吸附氧反应生成活性氧物种, 这些活性氧物种实现有机分子的热催化降解. Mar-van-Krevelen机理包含催化剂晶格氧氧化有机污染物和催化剂的氧化再生. 对于该过程, 催化剂类似于氧气传导媒介. 自由基链自氧化机理中, 有机物质(RH)与催化剂相互作用生成R?、H+和还原态的催化剂, 还原态的催化剂可通过与吸附氧反应再生, 同时生成HO?, 而HO?又可与RH反应得到R?和水. R?可通过与氧反应生成ROO?, 由此引发自由基链自氧化反应.
由于反应体系复杂多变的特性, 对于黑暗氛围的热催化反应需进行系统的研究以明确本征催化位点, 在确定涉及活性氧物种和表征催化性能时, 建议采用多种技术手段, 研究活性氧物种的产生和消亡、电子传递、以及目标污染物/中间产物和催化剂的相互作用, 以便准确了解反应进程、阐释反应机理、促进其在废水处理中的应用前景. 除了易降解的有机染料,应尽可能的尝试其他难降解有机污染物, 考察热催化剂催化性能的普适性.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
催化学报
ISSN: 0253-9837
CN: 21-1601/O6
Year: 2019
Issue: 8
Volume: 40
Page: 1117-1134
6 . 1 4 6
JCR@2019
1 5 . 7 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:184
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: