Indexed by:
Abstract:
Overcoming the sluggish kinetics of the water oxidation is the key to a high performance for solar water splitting. Herein, phosphorylated polymeric carbon nitride (PCN) photoanodes were developed and showed enhanced photocurrent densities for solar water splitting. A photocatalytic efficiency of 120 μA cm−2 was achieved in the basic solution (1.0 m NaOH) without sacrificial agents. In this system, phosphates were ionically anchored on the surface of PCN, and the modified films showed significantly increased density of valence electrons, and thus promoting photocatalytic efficiency. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Keyword:
Reprint 's Address:
Email:
Source :
ChemSusChem
ISSN: 1864-5631
Year: 2019
Issue: 12
Volume: 12
Page: 2605-2608
7 . 9 6 2
JCR@2019
7 . 5 0 0
JCR@2023
ESI HC Threshold:184
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: