Indexed by:
Abstract:
The BiOCOOH with multi-layered structure was synthesized by hydrothermal method, and then was used as sacrificial precursor to prepare several different products through adjusting heat treatment temperatures, including a new type of composite photocatalytic material β-Bi2O3/BiOCOOH with visible light response. The crystal structure, optical absorption performance, morphology, photocurrent and other physical and chemical properties of the products were characterized by means of X-ray diffraction (XRD), UV-Vis DRS, scanning electron microscope (SEM), photoelectric chemical response and other characterization methods. Their photocatalytic activity was assessed via degradation test of Rhodamine B solution. The results show that when the heat treatment temperature gradually increased from 250℃ to 330℃, 400℃ and 450℃, the following transformation occurred: BiOCOOH→β-Bi2O3/BiOCOOH→β-Bi2O3→α-Bi2O3. The visible light catalytic performance of the composite photocatalyst β-Bi2O3/BiOCOOH is the best. The degradation rate of Rhodamine B in the presence of β-Bi2O3/BiOCOOH composite photocatalyst was 6.7 times and 100 times higher than those in the presence of β-Bi2O3 and α-Bi2O3, respectively. The samples that showed the best decolorization rate for rhodamine B had a mineralization rate of 88% within 90 minutes of illumination. Electrochemical test results show that the composite β-Bi2O3/BiOCOOH has a larger photocurrent response and a smaller impedance than the plain materials β-Bi2O3 and BiOCOOH. In addition, by considering both of UV-Vis DRS and Mott-Shottky curves comprehensively, the positions of conduction and valence bands of β-Bi2O3 and BiOCOOH can be estimated respectively, and it is speculated that β-Bi2O3 and BiOCOOH can be closely combined to form z-type photocatalytic structure, thus having higher separation efficiency of photogenerated carriers and effective separation of photogenerated charges. © All right reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Chinese Journal of Materials Research
ISSN: 1005-3093
Year: 2020
Issue: 4
Volume: 34
Page: 311-320
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: