Indexed by:
Abstract:
The lead-free 0.5(Ba0.7Ca0.3)TiO3-0.5Ba(Ti0.8Zr0.2)O3 (BCTZ) ceramics with Er doping have shown good upconversion photoluminescence (PL) and desirable optical temperature sensing properties. To bridge a relationship between the structure/intrinsic defects and properties of rare-earth-doped ferroelectrics, we designed and fabricated a series of BCTZ ceramics doped with 1 mol % Er3+ by combining the first-principles calculations and experimental measurements. Theoretically, we discovered that Er can occupy both A sites (i.e., replacing Ba or Ca) and B sites (i.e., replacing Ti or Zr) in the BCTZ lattice and highlighted that the Er-doping-induced vacancy concentration decreases for both the oxygen vacancies (Vo) and cation vacancies (Vc). Experimentally, the enhanced PL performance and the dielectric, ferroelectric, and piezoelectric properties of the Er-doped BCTZ ceramics have been observed. Finally, the physical origin of Er-induced property enhancement in BCTZ has been elaborated according to the charge density and chemical bonding analysis. These results open up a path to investigate the effects of site substitution and vacancies on optoelectronic properties of multifunctional rare-earth-doped ferroelectrics. © Copyright © 2019 American Chemical Society.
Keyword:
Reprint 's Address:
Email:
Source :
ACS Omega
ISSN: 2470-1343
Year: 2019
Issue: 6
Volume: 4
Page: 11004-11013
2 . 8 7
JCR@2019
3 . 7 0 0
JCR@2023
ESI HC Threshold:184
JCR Journal Grade:2
CAS Journal Grade:4
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: