Indexed by:
Abstract:
现有的RDF数据分布式并行推理算法大多需要启动多个MapReduce任务,有些算法对于含有多个实例三元组前件的OWL规则的推理效率低下,使其整体的推理效率不高.针对这些问题,文中提出结合TREAT的基于Spark的分布式并行推理算法(DPRS).该算法首先结合RDF数据本体,构建模式三元组对应的alpha寄存器和规则标记模型;在OWL推理阶段,结合MapReduce实现TREAT算法中的alpha阶段;然后对推理结果进行去重处理,完成一次OWL全部规则推理.实验表明DPRS算法能够高效正确地实现大规模数据的并行推理.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
计算机系统应用
ISSN: 1003-3254
CN: 11-2854/TP
Year: 2017
Issue: 5
Volume: 26
Page: 97-104
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: