• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Luo, M. (Luo, M..) [1] | Huang, J. (Huang, J..) [2] | Tong, C. (Tong, C..) [3] | Liu, Y. (Liu, Y..) [4] | Duan, X. (Duan, X..) [5] | Hu, Y. (Hu, Y..) [6]

Indexed by:

Scopus

Abstract:

To better understand how seasonal change and the presence of plants affect biogeochemical iron (Fe) cycling in tidal marsh sediments, we examined the seasonal dynamics of microbial Fe reduction (FeR) and related Fe speciation from 2012 to 2014 using in situ vegetated and unvegetated mesocosms created with macrobenthos-proof enclosures. The pools of Fe(III) oxides, Fe sulfides, porewater Fe2+, and rates of microbial sulfate reduction (SR) peaked in summer (hot and wet), whereas rates of FeR and non-sulfidic Fe(II) levels peaked in winter (mild and dry). Sedge presence greatly increased the FeR rate, organic matter pools, and Fe(III) oxide levels, but decreased carbon:nitrogen ratios and sulfide abundances. FeR rates were mainly affected by the SR level, and temperature and plant primary productivity had comparable effects on SR rates. The dominant organic carbon mineralization pathway changed from SR in summer to FeR in winter in both vegetated and unvegetated mesocosms. FeR was more important in the vegetated mesocosms than in the unvegetated mesocosms, and seasonal change contributed more to the total variability of each anaerobic pathway than the presence of sedge. Our study reveals that temperature and plants both mediate variations in the organic carbon mineralization pathways of a subtropical estuarine tidal marsh. © The authors 2017.

Keyword:

Microbial iron reduction; Microbial sulfate reduction; Min River estuary; Organic carbon mineralization; Seasonality; Sedge; Tidal marsh

Community:

  • [ 1 ] [Luo, M.]Postdoctoral Research Station for Ecology, Fujian Normal University, Fuzhou, 350007, China
  • [ 2 ] [Luo, M.]School of Environment and Resources, Fuzhou University, Fuzhou, 350116, China
  • [ 3 ] [Luo, M.]Key Laboratory of Humid Subtropical Eco-Geographical Processes, Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
  • [ 4 ] [Huang, J.]Key Laboratory of Humid Subtropical Eco-Geographical Processes, Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
  • [ 5 ] [Tong, C.]Postdoctoral Research Station for Ecology, Fujian Normal University, Fuzhou, 350007, China
  • [ 6 ] [Tong, C.]Key Laboratory of Humid Subtropical Eco-Geographical Processes, Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
  • [ 7 ] [Liu, Y.]Postdoctoral Research Station for Ecology, Fujian Normal University, Fuzhou, 350007, China
  • [ 8 ] [Duan, X.]Postdoctoral Research Station for Ecology, Fujian Normal University, Fuzhou, 350007, China
  • [ 9 ] [Hu, Y.]Postdoctoral Research Station for Ecology, Fujian Normal University, Fuzhou, 350007, China

Reprint 's Address:

  • [Tong, C.]Postdoctoral Research Station for Ecology, Fujian Normal UniversityChina

Show more details

Related Keywords:

Related Article:

Source :

Marine Ecology Progress Series

ISSN: 0171-8630

Year: 2017

Volume: 577

Page: 1-15

2 . 2 7 6

JCR@2017

2 . 2 0 0

JCR@2023

ESI HC Threshold:247

JCR Journal Grade:2

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 10

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Affiliated Colleges:

Online/Total:73/10042802
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1