Indexed by:
Abstract:
The mining and discovery of overlapping and hierarchical communities is a hot topic in the area of social network research. Firstly, an algorithm, discovery of link conmunities based on extended link cluster sequence (DLC_ECS), is proposed to detect overlapping and hierarchical communities in social networks efficiently. Based on the extended link cluster sequence corresponding to community structures with various densities, the optimal link community is detected after searching for the global optimal density. The link communities are transformed into the node communities, and thus the overlapping communities can be found out. Then, hierarchical link communities extraction based on extended link cluster sequence (HLCE_ECS) is designed. Hierarchical link communities from the extended link cluster sequence is found by the proposed algorithm. The link communities are transformed into the node communities to find out the overlapping and hierarchical communities. Experimental results on are artificial and real-world datasets demonstrate that DLC_ECS algorithm significantly improves the community quality and HLCE_ECS algorithm effectively discovers meaningful hierarchical communities. ©, 2015, Journal of Pattern Recognition and Artificial Intelligence. All right reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Pattern Recognition and Artificial Intelligence
ISSN: 1003-6059
CN: 34-1089/TP
Year: 2015
Issue: 9
Volume: 28
Page: 828-838
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: