Indexed by:
Abstract:
In the existing subspace clustering algorithms, it is assumed that the data is derived from a union of multiple linear subspace, and these algorithms cannot deal with problems of nonlinear and time warping in time series clustering. To overcome these issues, elastic kernel low rank representation subspace clustering(EKLRR) and elastic kernel least squares regression subspace clustering(EKLSR) are proposed by introducing kernel tricks and elastic distance, and they are called elastic kernel subspace clustering(EKSC). Moreover, the grouping effect of EKLSR and the convergence of EKLRR are proved theoretically. The experimental results on five UCR datasets show the effectiveness of the proposed algorithms. © 2017, Science Press. All right reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Pattern Recognition and Artificial Intelligence
ISSN: 1003-6059
Year: 2017
Issue: 9
Volume: 30
Page: 779-790
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: