Indexed by:
Abstract:
A novel hydrophilic nanocomposite additive (TiO2-g-PNIPAAm) was synthesized by the surface modification of titanium dioxide (TiO2) with N-isopropylacrylamide (NIPAAm) via "graft-from" technique. And the nanocomposite membrane of poly(vinylidene fluoride) (PVDF)/TiO 2-g-PNIPAAm was fabricated by wet phase inversion. The graft degree was obtained by thermo-gravimetric analysis (TGA). Fourier transform infrared attenuated reflection spectroscopy (FTIR-ATR) and X-ray photoelectronic spectroscopy (XPS) characterization results suggested that TiO 2-g-PNIPAAm nanoparticles segregated on membrane surface during the phase separation process. Scanning electron microscopy (SEM) was conducted to investigate the surface and cross-section of the modified membranes. The water contact angle measurements confirmed that TiO2-g-PNIPAAm nanoparticles endowed PVDF membranes better hydrophlilicity and thermo-responsive properties compared with those of the pristine PVDF membrane. The water contact angle decreased from 92.8° of the PVDF membrane to 61.2° of the nanocompostie membrane. Bovine serum albumin (BSA) static and dynamic adsorption experiments suggested that excellent antifouling properties of membranes was acquired after adding TiO2-g-PNIPAAm. The maximum BSA adsorption at 40 °C was about 3 times than that at 23 °C. The permeation experiments indicated the water flux recover ratio and BSA rejection ratio were improved at different temperatures. © 2014 Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg.
Keyword:
Reprint 's Address:
Email:
Source :
Chinese Journal of Polymer Science (English Edition)
ISSN: 0256-7679
Year: 2014
Issue: 7
Volume: 32
Page: 892-905
1 . 8 3 5
JCR@2014
4 . 1 0 0
JCR@2023
ESI HC Threshold:268
JCR Journal Grade:2
CAS Journal Grade:4
Cited Count:
SCOPUS Cited Count: 21
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: