Indexed by:
Abstract:
为了实现在工业环境下的织物瑕疵在线检测,提出了一种基于单类支持向量机(OCSVM)的织物异常纹理检测方法.通过利用CCD采集织物图像,滤除图像噪声后提取了图像小区域窗口子图像特征;通过实验寻找了两组有效的特征向量,对特征值进行了归一化和主成份分析降维后导入支持向量机分类器中进行了训练,利用单类SVM对异常区域进行了定位和标记.通过对分别利用两组特征向量识别出的图像结果进行组合得到了最后的瑕疵区域.实验结果表明,该算法能够正确地对多种瑕疵进行识别,并能较大程度降低误检率和漏检率;同时,能够有效解决生产实际中瑕疵训练样本难以获取的问题,对未知的待测样本有较好的推广性,可以适应工业检测的要求.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
机电工程
ISSN: 1001-4551
CN: 33-1088/TH
Year: 2016
Issue: 2
Volume: 33
Page: 237-241
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: