Indexed by:
Abstract:
考虑到小波变换存在一些局限性,提出一种把非下采样Contourlet变换(NSCT)与脉冲耦合神经网络(PCNN)相结合的图像融合新方法。用NSCT变换从多尺度和多方向上分解配准后的原始图像。低频应用改进的边缘能量结合空间频率的融合方法;高频应用PCNN简化数学模型,其链接强度用改进的拉普拉斯能量和表示。并且选择点火映射图的点火次数与其标准差相结合的方法。最后经过NSCT逆变换得出融合图像。实验分析可知,与其他几种图像融合方法进行比较,新方法取得了更高质量的融合图像。
Keyword:
Reprint 's Address:
Email:
Version:
Source :
微型机与应用
ISSN: 1674-7720
CN: 11-5881/TP
Year: 2016
Issue: 23
Volume: 35
Page: 46-48,55
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: