Indexed by:
Abstract:
传统关于轨迹数据发布的隐私保护研究大多采用聚类技术,其相关算法只关注每条轨迹的隐私保护,忽视对轨迹聚类组特征的保护.通过理论分析和实验验证发现,对采用聚类发布技术产生的轨迹数据进行二次聚类,可得到原始轨迹数据在发布之前的聚类组特征,从而可能导致隐私泄露.为了有效预防二次聚类攻击,提出一种(k,δ,△)-匿名模型和基于该模型的聚类杂交隐私保护轨迹数据发布算法CH-TDP,算法CH-TDP对采用(k,δ)-匿名模型及相关算法处理得到的聚类分组先进行组间杂交,而后再进行组内扰乱,其目标在防止出现二次聚类攻击的前提下,保证发布轨迹数据的质量不低于阈值△.实验对算法CH-TDP的可行性及有效性与同类算法进行比较分析,结果表明算法CH-TDP是有效可行的.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
计算机研究与发展
ISSN: 1000-1239
CN: 11-1777/TP
Year: 2013
Issue: 3
Volume: 50
Page: 578-593
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: