Indexed by:
Abstract:
针对自然环境中各种背景噪声下的声音事件识别问题,提出一种基于遗传匹配追踪算法将自然环境音频信号稀疏表示进行分类的方法.首先,利用匹配追踪(MP)算法稀疏表示信号的主体结构,以消除噪声影响,其中利用采用精英策略的遗传算法(GA)优化MP的分解重构速度;接着,提取MFCCs作为音频信号的特征参数;最后,使用分类器支持向量机(SVM)和高斯混合模型(GMM)对4大类19种声音进行分类与比较,分类效果明显优于未进行稀疏表示的声音信号.实验表明,SVM模型分类效果优于GMM,提出的方法对实地采集的自然环境音频信号能有效识别.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
福州大学学报(自然科学版)
ISSN: 1000-2243
CN: 35-1337/N
Year: 2012
Issue: 6
Volume: 40
Page: 719-725
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: