• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

吴英杰 (吴英杰.) [1] | 王一蕾 (王一蕾.) [2] (Scholars:王一蕾) | 廖尚斌 (廖尚斌.) [3] | 王晓东 (王晓东.) [4]

Indexed by:

CQVIP PKU CSCD

Abstract:

目前关于隐私保护数据发布的研究大多是面向低维的关系型数据,其相关模型及算法无法直接用于解决稀疏的高维事务型数据发布中可能存在的隐私泄露问题.本文以剖分技术为基础,设计出一个面向隐私保护事务型数据发布的p-剖分l-多样化匿名算法.算法通过计算事务型数据中属性间的均方列联系数将高维属性集剖分成互不相交的p个属性子集,而后对事务型数据进行记录划分,使记录划分后的事务型数据关于p个属性子集满足l-多样化的要求.实验对匿名前后事务型数据的关联规则挖掘结果进行比较分析.理论分析和实验结果表明,本文的算法可安全地实现事务型数据发布的隐私保护,同时保证发布数据的可用性较高.

Keyword:

l-多样化 p-剖分 事务型数据 关联规则挖掘 隐私保护

Community:

  • [ 1 ] [吴英杰]福州大学
  • [ 2 ] [王一蕾]福州大学
  • [ 3 ] [廖尚斌]福州大学
  • [ 4 ] [王晓东]福州大学

Reprint 's Address:

Email:

Show more details

Version:

Related Keywords:

Related Article:

Source :

南京大学学报:自然科学版

ISSN: 0469-5097

CN: 32-1169/N

Year: 2011

Issue: 5

Volume: 47

Page: 551-558

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count: -1

Chinese Cited Count:

30 Days PV: 0

Online/Total:808/10049896
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1