Indexed by:
Abstract:
针对支持向量回归机的模型选择问题,将模型选择问题转化为一个非线性系统的状态估计问题,然后引入无迹卡尔曼滤波进行求解,提出一种新的基于无迹卡尔曼滤波的模型选择方法(UKF-SVR).对标准数据集和太阳黑子数平滑月均值进行仿真实验,结果表明,UKF-SVR与粒子群算法相比,该方法全局寻优能力更强,保证了支持向量回归机泛化能力的最大化,获得更高的预测精度.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
福州大学学报(自然科学版)
ISSN: 1000-2243
CN: 35-1337/N
Year: 2011
Issue: 4
Volume: 39
Page: 527-532,538
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: