Indexed by:
Abstract:
目前,JPEG图像的通用隐写检测是基于监督学习的,其关键技术包括图像特征提取和分类器的设计.首次提出了运用半监督学习中的EM算法来进行分类器的设计,该方法利用大量未标记样本辅助少量有标记样本进行分类器的学习.针对经典的JPEG隐写方法:Outguess和F5,用监督学习与文中半监督学习方法进行实验对比,结果表明,在缺少大量标记样本的情况下,文中方法能得到较好的分类性能,从而提高了JPEG图像通用隐写检测方法的实用性.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
计算机技术与发展
ISSN: 1673-629X
CN: 61-1450/TP
Year: 2009
Issue: 2
Volume: 19
Page: 169-172
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: