Indexed by:
Abstract:
在多目标粒子群算法中,粒子的飞行由自身的最优位置和指导粒子决定,如何定义适应度选出合适的指导粒子,指导搜索过程向全局Pareto最优区域飞行,并保持种群在最优前端的多样性是算法的关键问题.针对上述问题,构造了同时考虑粒子的Pareto占优情况和目标空间邻近密集度的表现型共享适应度函数,在此基础上提出一个基于表现型共享的多目标粒子群优化算法(MOPSO).为了验证算法的有效性,采用占优等级指标来分析近似解集的占优情况,并采用EPS、HYP和R2指标来衡量解集的分布情况.实验结果表明,算法具有较强的全局搜索能力,能在较小的计算代价下获得较好的Pareto前端近似.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
福州大学学报(自然科学版)
ISSN: 1000-2243
CN: 35-1337/N
Year: 2007
Issue: 3
Volume: 35
Page: 365-369
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: