Abstract:
针对目前传统人脸表情识别算法存在特征提取复杂、表情识别率低等问题,提出一种基于混合注意力机制的Res Net人脸表情识别方法。该方法把通道注意力模块和空间注意力模块组成混合注意力模块,将混合注意力模块嵌入Res Net残差学习分支中。针对CK+人脸表情数据集过小问题,采用数据增强策略扩充数据集。实验结果表明,改进后的Res Net在CK+数据集上表情识别准确率为97. 04%,有效提高了表情识别准确率。
Keyword:
Reprint 's Address:
Email:
Source :
信息技术与网络安全
Year: 2020
Issue: 01
Volume: 39
Page: 59-62
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: