Indexed by:
Abstract:
精准的PM_(2.5)小时浓度短期预测,可以有效地提高空气污染的预报预警能力.针对传统的PM_(2.5)预测模型中存在的影响因素考虑不全面且影响因素选择方法适用性不强等问题,本文提出一种融合栈式稀疏自编码器(Stack Sparse Auto-Encoder, SSAE)和长短期记忆神经网络(Long-Short Term Memory,LSTM)的PM_(2.5)小时浓度预测模型.SSAE-LSTM模型综合考虑了时间因素、空间因素、气象因素和空气污染物因素等多种因素对PM_(2.5)的影响,采用SSAE以无监督方式自动提取PM_(2.5)抽象影响特征,实现特征的压缩和降维;然后以提取的抽象特...
Keyword:
Reprint 's Address:
Email:
Source :
环境科学学报
Year: 2020
Issue: 09
Volume: 40
Page: 3422-3434
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: