Indexed by:
Abstract:
针对DSOD目标检测算法对小目标检测能力较弱的问题,提出在DSOD中引入RFB_a网络模块和Atrous卷积层予以改进。首先,该算法将DSOD网络的第二个转接层产生的特征图输入到RFB_a网络模块中,经过RFB_a网络不同采样步长的Atrous卷积提取具有不同感受野的特征,为后续检测小目标步骤提供所需特征;其次,为了增加特征图的语义信息,在第二个无池化转接层后加入采样步长为6的Atrous卷积层;最后,在损失函数中加入IOG惩罚项,防止在预测密集的同类型目标时出现同类预测框重叠,从而避免在NMS后处理时出现漏检。实验表明,该算法相对于原DSOD算法具有更高的检测精度,提高了对小目标的检测能力,...
Keyword:
Reprint 's Address:
Email:
Source :
半导体光电
Year: 2019
Issue: 03
Volume: 40
Page: 428-432,437
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: