Indexed by:
Abstract:
为解决高分辨率遥感影像变化检测中存在底层特征缺乏语义信息、像元级的检测结果存在"椒盐"现象以及监督分类中样本标注自动化程度较低,本文提出一种基于超像元词包特征和主动学习的变化检测方法。首先采用熵率分割算法获取叠加影像的超像元对象;其次提取两期影像像元点对间的邻近相关影像特征(相关度、斜率和截距)和顾及邻域的纹理变化强度特征(均值、方差、同质性和相异性),经线性组合作为像元点对的底层特征;然后基于像元点对底层特征利用BOW模型构建超像元词包特征,并采用一种改进标注策略的主动学习方法从无标记样本池中优选信息量较大的样本,且自动标注样本类别;最后训练分类器模型完成变化检测。通过选用2组不同地区的GF...
Keyword:
Reprint 's Address:
Email:
Source :
地球信息科学学报
Year: 2019
Issue: 10
Volume: 21
Page: 1594-1607
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: