Indexed by:
Abstract:
基于监督分类的高分辨率遥感影像变化检测需要大量人工标注,且单个监督分类器难以适应高分影像中复杂多样的地表变化信息提取,检测结果中"椒盐噪声"严重、变化图斑破碎。因此,本文提出一种基于Adaboost集成算法、自动标注训练样本的变化检测方法。首先利用非监督分类方法完成变化初检,接着在初检结果中进行"非等距"区间采样自动获取均匀分布的训练样本;然后以Adaboost算法为集成框架,选择决策树桩、Logistic回归和k NN作为弱分类器,构建一种混合分类器集成系统,充分挖掘和利用高分影像中的空间信息以提升分类精度和分类器泛化能力,最后利用SLIC分割算法和空间邻域信息对像元级检测结果进行空间约束滤...
Keyword:
Reprint 's Address:
Email:
Source :
地球信息科学学报
Year: 2018
Issue: 12
Volume: 20
Page: 1756-1767
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: