Indexed by:
Abstract:
传统子空间聚类算法向量化时忽略样本的自然结构信息,并且容易造成高维度小样本问题,从而导致聚类信息损失.为了弥补该缺陷,文中提出基于最小二乘回归的分块加权子空间聚类(WB-LSR).首先,将样本按维度分成若干块,并求得各个块对应的仿射矩阵.然后,通过相互投票方式对各仿射矩阵设置权重,将加权和作为最终的仿射矩阵.在图像数据和视频数据上的实验表明,文中方法能有效提升聚类准确率.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
模式识别与人工智能
ISSN: 1003-6059
CN: 34-1089/TP
Year: 2016
Issue: 12
Volume: 29
Page: 1114-1121
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: