Indexed by:
Abstract:
为了提高变压器差动保护识别励磁涌流与内部故障电流的能力,提出一种基于广义回归神经网络(GRNN)的变压器励磁涌流识别方法。首先通过全波傅里叶算法求得差动电流的特征量作为训练样本,然后利用交叉验证法寻找出GRNN神经网络的扩展常数spread的最优值,同时也计算出训练样本的最佳输入、输出值。由这些参数构建出识别励磁涌流的神经网络,仿真结果表明:GRNN神经网络收敛性好,运算速度快,并且预测输出精度非常高,能准确、有效、快速的识别出励磁涌流与内部故障电流。
Keyword:
Reprint 's Address:
Email:
Source :
电测与仪表
ISSN: 1001-1390
Year: 2016
Issue: 23
Volume: 53
Page: 84-89
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count: -1
30 Days PV: 1
Affiliated Colleges: