Indexed by:
Abstract:
为了提高监控噪声环境下人脸图像的重建质量,提出基于后验信息的鲁棒性原子库构建方法及基于该原子库的超分辨率的方法,通过事后采集现场图像,训练只对输入图像的清晰内容稀疏而对噪声内容不稀疏的低维原子集和与之相对应的高维原子集,计算低维空间的稀疏系数并映射到高维空间以合成出重建人脸图像,从而提高基于稀疏表示的局部脸超分辨率对于监控噪声的鲁棒性.实验结果表明:对于实际拍摄的监控图像输入,提出的基于后验信息的原子库具有很好的鲁棒性能,重建结果比传统方法有更好的主观效果.
Keyword:
Reprint 's Address:
Email:
Source :
北京工业大学学报
ISSN: 0254-0037
Year: 2013
Issue: 7
Volume: 39
Page: 1072-1077
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count: -1
30 Days PV: 2
Affiliated Colleges: