Indexed by:
Abstract:
针对在电力系统短期负荷预测应用中,单个神经网络存在预测精度较低、预测结果不稳定、泛化能力差的特点,本文提出一种新的基于多神经网络自适应集成的预测模型。通过对某地区的实际负荷数据进行预测分析表明,该方法以很小的运算时间代价、较小的存储空间代价显著地提高了单个网络的预测精度和泛化能力,具有良好的应用价值。
Keyword:
Reprint 's Address:
Email:
Source :
微计算机信息
ISSN: 1008-0570
Year: 2008
Issue: 21
Volume: 24
Page: 172-174
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count: -1
30 Days PV: 0
Affiliated Colleges: