Indexed by:
Abstract:
本发明涉及一种基于集成学习的僵尸网络恶意流量分类方法及系统,该方法包括:步骤A:将已标注类别的恶意流量数据转换为带类别标签的IDX图像数据,建立恶意流量训练集R;步骤B:构造包含三个深度残差卷积神经网络的初级分类器,构造softmax逻辑回归模型作为次级分类器;步骤C:将训练集R分为R0和R1两部分,使用R0训练初级分类器,提取恶意流量特征向量,并将提取的特征向量添加到R0中,增强该部分训练集;步骤D:将增强后的训练集与R1合并,用其训练次级分类器;步骤E:将待判定类别的恶意流量数据转换为IDX图像格式,输入到训练好的次级分类器,输出判定结果。该方法及系统有利于快速、准确地识别恶意流量类别。
Keyword:
Reprint 's Address:
Email:
Patent Info :
Type: 发明申请
Patent No.: CN202010122760.5
Filing Date: 2020/2/27
Publication Date: 2023-02-21 00:00:00
Pub. No.: CN111340191B
公开国别: 中国
Applicants: 福州大学
Legal Status: 授权
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: