• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Xiao, Shuyao (Xiao, Shuyao.) [1] | Luo, Min (Luo, Min.) [2] (Scholars:罗敏) | Liu, Yuxiu (Liu, Yuxiu.) [3] | Bai, Jing (Bai, Jing.) [4] | Yang, Yang (Yang, Yang.) [5] | Zhai, Zhifeng (Zhai, Zhifeng.) [6] | Huang, Jiafang (Huang, Jiafang.) [7]

Indexed by:

EI SCIE

Abstract:

It is becoming increasingly clear that plants can affect iron (Fe) dynamics in tidal wetland soils, but whether this is rhizosphere effect-dependent remains unclear. To assess rhizosphere effects on soil Fe cycling, in-situ rhizosphere and bulk soil samples (0-60-cm) were collected from a tidal wetland across plant growth stages (regreening, shooting, and senescence). Changes in Fe fractions, the abundance of Fe-oxidizing/reducing bacteria (165 rRNA gene), root morphology traits, and soil and porewater geochemistry were examined. Overall, the rhizosphere effect decreased soil pH but increased the concentrations of dissolved organic carbon (DOC), porewater Fe2+, and bicarbonates (HCO3-). Both Fe-oxidizing and Fe-reducing bacteria were more enriched in the rhizosphere than those in the bulk soil. The rhizosphere effect increased the concentrations of amorphous and crystalline Fe(III), and also enhanced the proportion of amorphous Fe(III). The rhizosphere had higher concentrations of non-sulfidic ferrous iron [Fe(II)] but lower concentrations of ferrous sulfide (FeS) and pyrites (FeS2) than those in bulk soils, suggesting that the rhizosphere effect favors microbial Fe(III) reduction but suppresses microbial sulfate reduction. Moreover, the rhizosphere amorphous Fe(III) levels changed following the patterns of root porosity, which attained peak values at the root tips. The abundance of Fe-reducing bacteria was controlled by both DOC and amorphous Fe(III) concentrations, which were relatively higher during the regreening and shooting stages than those during the senescence stage. Taken together, our findings highlight that the rhizosphere effect transfer Fe from the bulk soil to the rhizosphere and especially redirects it from Fe-S associations to microbially-mediated Fe redox cycling.This rapid Fe redoxcy cling could be responsible for buffering soils and organisms from sulfide accumulation and stimulate C mineralization in the tidal wetland ecosystem. (C) 2020 Elsevier B.V. All tights reserved.

Keyword:

Amorphous Fe(III) Fe-oxidizing bacteria Fe-reducing bacteria Fe sulfides Rhizosphere effect Tidal wetland

Community:

  • [ 1 ] [Xiao, Shuyao]Fujian Normal Univ, Sch Geog Sci, Shangsan St 8, Fuzhou 35008, Peoples R China
  • [ 2 ] [Liu, Yuxiu]Fujian Normal Univ, Sch Geog Sci, Shangsan St 8, Fuzhou 35008, Peoples R China
  • [ 3 ] [Bai, Jing]Fujian Normal Univ, Sch Geog Sci, Shangsan St 8, Fuzhou 35008, Peoples R China
  • [ 4 ] [Yang, Yang]Fujian Normal Univ, Sch Geog Sci, Shangsan St 8, Fuzhou 35008, Peoples R China
  • [ 5 ] [Huang, Jiafang]Fujian Normal Univ, Sch Geog Sci, Shangsan St 8, Fuzhou 35008, Peoples R China
  • [ 6 ] [Luo, Min]Fuzhou Univ, Sch Environm & Resource, Wulongtrang North Ave St 2, Fuzhou 350116, Peoples R China
  • [ 7 ] [Zhai, Zhifeng]Fuzhou Univ, Sch Environm & Resource, Wulongtrang North Ave St 2, Fuzhou 350116, Peoples R China
  • [ 8 ] [Xiao, Shuyao]Fujian Normal Univ, Key Lab Humid Subtrop Ecogeog Proc, Minist Educ, Fuzhou 350007, Peoples R China
  • [ 9 ] [Luo, Min]Fujian Normal Univ, Key Lab Humid Subtrop Ecogeog Proc, Minist Educ, Fuzhou 350007, Peoples R China
  • [ 10 ] [Liu, Yuxiu]Fujian Normal Univ, Key Lab Humid Subtrop Ecogeog Proc, Minist Educ, Fuzhou 350007, Peoples R China
  • [ 11 ] [Bai, Jing]Fujian Normal Univ, Key Lab Humid Subtrop Ecogeog Proc, Minist Educ, Fuzhou 350007, Peoples R China
  • [ 12 ] [Yang, Yang]Fujian Normal Univ, Key Lab Humid Subtrop Ecogeog Proc, Minist Educ, Fuzhou 350007, Peoples R China
  • [ 13 ] [Zhai, Zhifeng]Fujian Normal Univ, Key Lab Humid Subtrop Ecogeog Proc, Minist Educ, Fuzhou 350007, Peoples R China
  • [ 14 ] [Huang, Jiafang]Fujian Normal Univ, Key Lab Humid Subtrop Ecogeog Proc, Minist Educ, Fuzhou 350007, Peoples R China

Reprint 's Address:

  • 罗敏

    [Huang, Jiafang]Fujian Normal Univ, Sch Geog Sci, Shangsan St 8, Fuzhou 35008, Peoples R China;;[Luo, Min]Fuzhou Univ, Sch Environm & Resource, Wulongtrang North Ave St 2, Fuzhou 350116, Peoples R China

Show more details

Related Keywords:

Source :

SCIENCE OF THE TOTAL ENVIRONMENT

ISSN: 0048-9697

Year: 2021

Volume: 756

1 0 . 7 5 3

JCR@2021

8 . 2 0 0

JCR@2023

ESI Discipline: ENVIRONMENT/ECOLOGY;

ESI HC Threshold:114

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 18

SCOPUS Cited Count: 20

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:114/10054479
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1