Indexed by:
Abstract:
Because of the high efficiency and mild reaction conditions, electrocatalytic CO2 reduction (ECR) has attracted significant attention in recent years. However, the specific mechanism of the formation of the two-electron production (CO or HCOOH) in this reaction is still unclear. Herein, with density functional theory calculation and experimental manipulation, the specific mechanism of the selective two-electron reduction of CO2 has been systematically investigated, employing the polyphenolate-substituted metalloporphyrinic frameworks, ZrPP-1-M (M = Fe, Co, Ni, Cu, and Zn), as model catalysts. Experimental observations and theoretical calculations discovered that ZrPP-1Co is a more favorable catalyst for ECR among them. Compared with the formation of HCOOH, electroreduction of CO2 into CO has more beneficial thermodynamic and kinetic routes with ZrPP-1-Co as a catalyst. After introducing the r-GO for improving the conductivity, the Faradaic efficiency for CO formation is 82.4% at -0.6 v (vs RHE).
Keyword:
Reprint 's Address:
Email:
Source :
ACS APPLIED MATERIALS & INTERFACES
ISSN: 1944-8244
Year: 2020
Issue: 47
Volume: 12
Page: 52588-52594
9 . 2 2 9
JCR@2020
8 . 5 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:196
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 4
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: