Indexed by:
Abstract:
Although perovskite films have excellent extinction coefficients, further increase of the light-absorbing capacity by increasing the thickness of the active layer is always required in perovskite solar cells (PSCs). However, to maintain the morphology quality of the perovskite layer, the film thickness is subject to certain restrictions. To increase the light absorbance without significantly inflating the perovskite film while keeping the high quality of the perovskite film, herein, we added an aqueous solution of gold nanorods (AuNRs) to the perovskite precursor solution via a so-called asynchronous synergistic effect (ASE) strategy of water and AuNR. The former improves the quality of the perovskite film during the crystallization process to reduce defect density and enhance carrier mobility. Simultaneously, the latter increases the light absorption of the perovskite layer through the localized surface plasmon resonance (LSPR) effect when the device is exposed to light. We show that the ASE strategy leads to an excellent power conversion efficiency (PCE) of 21.73 % and outstanding long-term stability, which can retain 95 % of its initial PCE after storage for three months in an air atmosphere.
Keyword:
Reprint 's Address:
Email:
Source :
CHEMPLUSCHEM
ISSN: 2192-6506
Year: 2021
Issue: 2
Volume: 86
Page: 291-297
3 . 2 1
JCR@2021
3 . 0 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:117
JCR Journal Grade:3
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 33
SCOPUS Cited Count: 33
ESI Highly Cited Papers on the List: 2 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: