Indexed by:
Abstract:
Zero offsets and geometric source errors will significantly degrade the kinematic accuracy of redundantly actuated parallel manipulators (RAPMs). To relieve the influences of these factors, this paper presents a minimal-error-model based two-step kinematic calibration methodology for this type of parallel manipulators. A novel 3-DOF spindle head with a 2UPR&2RPS topology is taken as an example to demonstrate the kinematic calibration methodology. The proposed kinematic calibration methodology includes three critical steps: (1) a set of general principles is proposed to eliminate redundant geometric source errors in the manipulator to derive a minimal error model that includes the least number of geometric source errors; (2) a sensitivity analysis is carried out using the Monte-Carlo simulation to reveal the relative impact of geometric source errors on the terminal accuracy; (3) a hierarchical identification strategy composed of a coarse identification and a fine identification is proposed, based on which a two-step calibration methodology is constructed. Finally, a set of calibration experiments is performed to verify the effectiveness of the proposed calibration methodology.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
MECHANISM AND MACHINE THEORY
ISSN: 0094-114X
Year: 2022
Volume: 167
5 . 2
JCR@2022
4 . 5 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:66
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 22
SCOPUS Cited Count: 25
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: