Indexed by:
Abstract:
A Ce doped SnO2 (Ce-SnO2) photocatalyst was constructed under the argon atmosphere with abundant oxygen vacancies (OVs) for adsorption and activation of NO and O-2, aiming to promote NO deep oxidation removal efficiency under different relative humidity. It was found that the incorporation of cerium ions into SnO2 could results in the generation of OVs under argon atmospheres, which further promoted NO deep oxidation under visible light irradiation. The theoretical calculations results and in-situ DRIFTS demonstrated that NO was actively adsorbed at OVs sites to form the NO- intermediate and finally transformed to the harmless nitrate and nitrite products by the activated reactive oxygen species (ROS) at OVs sites. This process could occur continuously since more OVs were formed under visible light irradiation. This study maybe provides a new approach to design and synthesize high-efficient photocatalysts for NO removal.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
APPLIED CATALYSIS B-ENVIRONMENTAL
ISSN: 0926-3373
Year: 2021
Volume: 284
2 4 . 3 1 9
JCR@2021
2 0 . 3 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:117
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 41
SCOPUS Cited Count: 50
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: