• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Lin, Xin (Lin, Xin.) [1] | Wei, Zhi-Quan (Wei, Zhi-Quan.) [2] | Mo, Qiao-Ling (Mo, Qiao-Ling.) [3] | Hou, Shuo (Hou, Shuo.) [4] | Xu, Shuai (Xu, Shuai.) [5] | Fu, Xiao-Yan (Fu, Xiao-Yan.) [6] | Xiao, Fang-Xing (Xiao, Fang-Xing.) [7] (Scholars:肖方兴)

Indexed by:

EI SCIE

Abstract:

Photocatalytic selective organic transformation represents an emerging avenue for artificial photosynthesis toward renewable solar energy conversion. However, solar-to-chemical conversion efficiency in photocatalysis is largely hampered by the sluggish charge transfer kinetic and difficulty in precise control over the charge migration pathway. Herein, we demonstrate conceptually new metal-insulator-semicon ductor (MIS) electron tunneling photosystems to finely modulate the directional charge flow for photoredox selective organic transformation. The ultrathin insulating organic ligands layers capped on the surfaces of metal nanocrystals (NYs) and transition metal chalcogenides quantum dots (TMCs QDs) mutually function as precise directing-mediums to stimulate spontaneous electrostatic self-assembly between the tailor-made oppositely charged metal NYs and TMCs QDs for constructing metal (Au, Pd) NYs/TMCs (CdSe, CdS) QDs heterostructured electron tunneling photosystems. The electrons photoexcited from TMCs QDs can be efficaciously extracted and tunneled to metal NYs across the intermediate insulating hierarchical ligands layers to participate in the photoredox catalysis. The metal NYsinsulating ligands-TMCs QDs photosystems can efficiently mediate the minority carrier transport across the intermediate insulating ligand layers with minimal recombination, thereby resulting in the significantly enhanced net efficiency of multifarious photoactivities toward selective organic transformation including anaerobic photoreduction of nitroaromatics to amino derivatives and selective photo oxidation of aromatic alcohols to aldehydes under visible light irradiation. The ligand-triggered electron tunneling effect has been evidence to be universal. Our work would inspire ongoing interest in exploring diverse organic ligands-based charge tunneling photosystems and provide a valuable roadmap for substantial solar energy conversion. (c) 2021 Elsevier Inc. All rights reserved.

Keyword:

Electron tunneling Metal-Insulator-Semiconductor (MIS) photosystem Selective organic transformation Self-assembly

Community:

  • [ 1 ] [Lin, Xin]Fuzhou Univ, Coll Mat Sci & Engn, New Campus, Minhou 350108, Fujian, Peoples R China
  • [ 2 ] [Wei, Zhi-Quan]Fuzhou Univ, Coll Mat Sci & Engn, New Campus, Minhou 350108, Fujian, Peoples R China
  • [ 3 ] [Mo, Qiao-Ling]Fuzhou Univ, Coll Mat Sci & Engn, New Campus, Minhou 350108, Fujian, Peoples R China
  • [ 4 ] [Hou, Shuo]Fuzhou Univ, Coll Mat Sci & Engn, New Campus, Minhou 350108, Fujian, Peoples R China
  • [ 5 ] [Xu, Shuai]Fuzhou Univ, Coll Mat Sci & Engn, New Campus, Minhou 350108, Fujian, Peoples R China
  • [ 6 ] [Fu, Xiao-Yan]Fuzhou Univ, Coll Mat Sci & Engn, New Campus, Minhou 350108, Fujian, Peoples R China
  • [ 7 ] [Xiao, Fang-Xing]Fuzhou Univ, Coll Mat Sci & Engn, New Campus, Minhou 350108, Fujian, Peoples R China
  • [ 8 ] [Xiao, Fang-Xing]Fujian Sci & Technol Innovat Lab Optoelect Inform, Fuzhou 350108, Fujian, Peoples R China

Reprint 's Address:

  • 肖方兴

    [Xiao, Fang-Xing]Fuzhou Univ, Coll Mat Sci & Engn, New Campus, Minhou 350108, Fujian, Peoples R China;;[Xiao, Fang-Xing]Fujian Sci & Technol Innovat Lab Optoelect Inform, Fuzhou 350108, Fujian, Peoples R China

Show more details

Related Keywords:

Source :

JOURNAL OF CATALYSIS

ISSN: 0021-9517

Year: 2021

Volume: 400

Page: 28-39

8 . 0 4 7

JCR@2021

6 . 5 0 0

JCR@2023

ESI Discipline: CHEMISTRY;

ESI HC Threshold:117

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 13

SCOPUS Cited Count: 10

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

Online/Total:116/10043119
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1