Indexed by:
Abstract:
This paper focuses on a proton-exchange membrane (PEM) fuel cell/electrolyzer-based regenerative hybrid power system modeling and energy management for automotive application. In the regenerative hybrid power system, the fuel cell acts as the main power, and the battery, supercapacitor, and electrolyzer consist of a hybrid energy storage system (HESS) to provide and/or reclaim the extra power. To effectively distribute the hybrid power, the load power demand of the automobile is handled by using the wavelet transform based on the power change rate. The supercapacitor copes with the high power change rate load demand, and the low-slope portion is balanced by the fuel cell/electrolyzer and battery. To reduce the fuel consumption online, an improved rule-based energy management strategy (EMS) depending on dynamic programming (DP) allocation of fuel cell power and battery state of charge (SOC) is developed, and an electrolyzer operation strategy is also designed. The numerical simulation is implemented to test the proposed rule-based EMS, and the results indicate that the real-time control keeping 93.8% fuel consumption performance compared with the off-line global optimization solution in a given driving cycle. (c) 2020 American Society of Civil Engineers.
Keyword:
Reprint 's Address:
Version:
Source :
JOURNAL OF ENERGY ENGINEERING
ISSN: 0733-9402
Year: 2020
Issue: 6
Volume: 146
2 . 0 4
JCR@2020
2 . 0 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:132
JCR Journal Grade:3
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 22
SCOPUS Cited Count: 26
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: