Indexed by:
Abstract:
With the growing penetration of solar photovoltaic (PV) generation, advanced data analysis methods have been applied to the smart grid operation. However, the low-temporal-resolution PV generation data limits the utilization of the data analysis methods, because the low-temporal-resolution PV generation data contains too little information. On the other hand, the existing data reconstruction methods are less than satisfactory in reconstructing high-temporal-resolution PV generation data from low-temporal-resolution data, since most of them cannot fully capture the characteristics of PV generation data. To address this issue, a PV generation data reconstruction method based on improved super-resolution generative adversarial network is proposed in this paper. First, a data-image construction method is proposed to encode the PV generation data into the so-called data-images. Furthermore, we develop a data-image super-resolution generative adversarial network (DISRGAN) model, and the data-images are used to train the DISRGAN model. Finally, based on the trained DISRGAN model, a general framework is developed to reconstruct high-temporal-resolution PV generation data from lowtemporal-resolution data. Numerical experiments have been carried out based on PV generation data from the State Grid Corporation of China, to reconstruct the high-temporal-resolution data from low-temporal-resolution data. The results demonstrate the superior performance of the proposed framework compared with a series of state-of-the-art methods.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS
ISSN: 0142-0615
Year: 2021
Volume: 132
5 . 6 5 9
JCR@2021
5 . 0 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:105
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 7
SCOPUS Cited Count: 11
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: