Indexed by:
Abstract:
Functional electrical stimulation (FES) provides an effective way for foot drop (FD) correction. To overcome the redundant and blind stimulation problems in the state-of-the-art methods, this study proposes a closed-loop scheme for an adaptive electromyography (EMG)-modulated stimulation profile. The developed method detects real-time angular velocity during walking. It provides feedbacks to a long short-term memory (LSTM) neural network for predicting synchronous tibialis anterior (TA) EMG. Based on the prediction, it modulates the stimulation intensity, taking into account of the subject-specific dead zone and saturation of the electrically evoked activation. The proposed method is tested on ten able-bodied participants and six FD subjects as proof of concept. The experimental results show that the proposed method can successfully induce the dorsiflexion of the ankle joint, and generate an activation pattern similar to a natural gait, with the mean Correlation Coefficient of 0.9021. Thus, the proposed method has the potential to help patients to retrieve normal gait.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
ISSN: 2168-2194
Year: 2021
Issue: 1
Volume: 25
Page: 59-68
7 . 0 2 1
JCR@2021
6 . 7 0 0
JCR@2023
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:106
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 14
SCOPUS Cited Count: 15
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1