Indexed by:
Abstract:
Solution-processed metal-halide perovskites hold great promise in developing next-generation low-cost, high-performance photodetectors. However, the weak absorption of perovskites beyond the near-infrared spectral region posts a stringent limitation on their use for broadband photodetectors. Here, the rational design and synthesis of an upconversion nanoparticles (UCNPs)-perovskite nanotransducer are presented, namely UCNPs@mSiO(2)@MAPbX(3) (X = Cl, Br, or I), for broadband photon detection spanning from X-rays, UV, to NIR. It is demonstrated that, by in situ crystallization and deliberately tuning the material composition in the lanthanide core and perovskites, the nanotransducers allow for a high stability and show a wide linear response to X-rays of various dose rates, as well as UV/NIR photons of various power densities. The findings provide an opportunity to explore the next-generation broadband photodetectors in the field of high-quality imaging and optoelectronic devices.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ADVANCED MATERIALS
ISSN: 0935-9648
Year: 2021
Issue: 25
Volume: 33
3 2 . 0 8 6
JCR@2021
2 7 . 4 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:142
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 45
SCOPUS Cited Count: 44
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: