• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Jia, Zhenzhen (Jia, Zhenzhen.) [1] | Hong, Ruoyu (Hong, Ruoyu.) [2] (Scholars:洪若瑜)

Indexed by:

EI SCIE

Abstract:

The organic-inorganic hybrid coating was fabricated for anti-corrosion application using bisphenol A diglycidyl ether (BADGE) epoxy resin with inorganic silica nanoparticles prepared by sol-gel method. The precursor, tetraethyl orthosilicate (TEOS) formed via hydrolytic condensation the silica dispersed in the protective coating on the metal substrate that could prevent the permeation of corrosive media. In order to increase the functionality of the coating, the photocatalyst zinc oxide (ZnO) nanoparticles were added to bestow the light degradation on the coating. The as-fabricated nanoparticles and coatings were analyzed using Fourier Transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-vis spectrum (UV-vis) analysis. The anti-corrosion performance of the organic-inorganic hybrid coating was investigated by electrochemical impedance spectroscopy (EIS) and salt spray tests. Noteworthily, EIS results showed that the epoxysilica organic-inorganic coating was109 omega cm2,which could increase the impedance modulus (at 0.01 Hz) of Q215 steel by about 7 orders of magnitude after immersion in 3.5 wt% NaCl aqueous solution for 96 h. The salt spray test results showed that metal substrate was still not completely corroded after 68 days. In addition, the addition of ZnO to the coating has photo-degradation effect on methyl orange and the photo-degradation efficiency can reach 55%.

Keyword:

Anti-corrosion Organic-inorganic hybrid coatings Photocatalytic TEOS ZnO

Community:

  • [ 1 ] [Jia, Zhenzhen]Fuzhou Univ, Coll Chem Engn, Fuzhou 350108, Peoples R China
  • [ 2 ] [Hong, Ruoyu]Fuzhou Univ, Coll Chem Engn, Fuzhou 350108, Peoples R China

Reprint 's Address:

  • 洪若瑜

    [Hong, Ruoyu]Fuzhou Univ, Coll Chem Engn, Fuzhou 350108, Peoples R China

Show more details

Version:

Related Keywords:

Source :

COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS

ISSN: 0927-7757

Year: 2021

Volume: 622

5 . 5 1 8

JCR@2021

4 . 9 0 0

JCR@2023

ESI Discipline: CHEMISTRY;

ESI HC Threshold:117

JCR Journal Grade:2

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count: 17

SCOPUS Cited Count: 19

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 4

Online/Total:99/10001525
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1