Indexed by:
Abstract:
Straw addition can increase the content of soil organic carbon (SOC), and affect the content of aggregates and organic carbon fractions. The changes in aggregates and organic carbon fractions in the natural salt marsh, 10-year and 15-year freshwater pumping areas in the Yellow River Estuary were studied by 120-day field in situ culture experiments with Phragmites australis straw addition. The results showed that straw addition mainly enhanced the soil aggregate stability in the 10-year freshwater pumping area, and the organic carbon content of small macro-aggregates increased significantly by 26.36% (P < 0.05). In particular, the content of coarse particulate organic carbon (cPOC) with small macro-aggregates in all areas increased significantly with the addition of straw (P < 0.05). For small macro-aggregates in the 10-year pumping area, the cPOC contents increased significantly by 21.73 g/kg (P < 0.05); and were significantly higher than the fine particulate organic carbon (fPOC) and mineral-associated organic carbon (mSOC) contents, as the fPOC contents in micro-aggregates increased by 85.92% (P < 0.05). Additionally, the cPOC contents of small macro-aggregates and fPOC contents of micro aggregates increased by 34.59% and 43.24% in the 15-year pumping area. The contents of mSOC were the lowest in different aggregates across all areas. Thus, straw addition had a significant effect on the contents of cPOC and fPOC, while freshwater pumping in the YRE could affect the distribution of fPOC and mSOC with aggregates. (c) 2021 Elsevier B.V. All rights reserved.
Keyword:
Reprint 's Address:
Version:
Source :
SCIENCE OF THE TOTAL ENVIRONMENT
ISSN: 0048-9697
Year: 2021
Volume: 777
1 0 . 7 5 3
JCR@2021
8 . 2 0 0
JCR@2023
ESI Discipline: ENVIRONMENT/ECOLOGY;
ESI HC Threshold:114
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 13
SCOPUS Cited Count: 15
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: