Indexed by:
Abstract:
The Quasi-Newton method (QN) is widely used in solving large-scale optimization problems due to its high efficiency. However, this algorithm requires a large number of iterative calculations, which is more time-consuming to compute in software. The Davidon-Fletcher-Powell (DFP) algorithm has been implemented on field-programmable gate array (FPGA) in order to speed up the computation. The number of iterations in the online search part of the algorithm is excessive, which affects the speed of the calculation. In order to solve this problem, this paper proposes a hardware implementation of DFP algorithm using inexact linear search. The results show that the calculation speed of the DFP algorithm implemented in this paper on the software side and FPGA platform is increased by 7.59 times and 3.08 times, respectively. And resource consumption and accuracy have little effect on the results. © Content from this work may be used under the terms of the Creative Commons Attribution 3.0 Licence.
Keyword:
Reprint 's Address:
Email:
Source :
ISSN: 1742-6588
Year: 2021
Issue: 1
Volume: 2010
Language: English
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: