Indexed by:
Abstract:
In this paper, a dynamic recombined multi-population particle swarm optimization algorithm based on chaotic-mutation (CDMSPSO) is proposed to realize self-tuning of the weighting factors when model predictive control algorithm (MPC) is dealing with multi-objective and multi-constraint conditions. By analyzing the design principle of cost function in the model predictive torque control (MPTC), taking the root mean square of the current error in the two-phase rotating coordinate system as a reference, the objective function of particles in particle swarm optimization is designed with reducing the torque ripple and reducing the current total harmonic distortion (THD)as the main control objectives. The whole population was divided into several small sub-particle swarms by using CDMSPSO, and the particles were randomly recombined with a certain recombination period, then a random sub-particle swarm is selected and chaotic sequence is generated iteratively on the basis of any particle, and the selected sub-particle swarm is replaced by the new chaotic sequence to realize chaotic mutation of particles. Simulation and experimental results show that this method can solve the problem of weighting factors setting well and achieve excellent steady-state performance. © 2021, Electrical Technology Press Co. Ltd. All right reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Transactions of China Electrotechnical Society
ISSN: 1000-6753
Year: 2021
Issue: 1
Volume: 36
Page: 50-59 and 76
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 37
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: