• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Al-Ghussain, Loiy (Al-Ghussain, Loiy.) [1] | Ahmad, Adnan Darwish (Ahmad, Adnan Darwish.) [2] | Abubaker, Ahmad M. (Abubaker, Ahmad M..) [3] | Abujubbeh, Mohammad (Abujubbeh, Mohammad.) [4] | Almalaq, Abdulaziz (Almalaq, Abdulaziz.) [5] | Mohamed, Mohamed A. (Mohamed, Mohamed A..) [6]

Indexed by:

EI

Abstract:

Recently, many renewable energy (RE) initiatives around the world are based on general frameworks that accommodate the regional assessment taking into account the mismatch of supply and demand with pre-set goals to reduce energy costs and harmful emissions. Hence, relying entirely on individual assessment and RE deployment scenarios may not be effective. Instead, developing a multi-faceted RE assessment framework is vital to achieving these goals. In this study, a regional RE assessment approach is presented taking into account the mismatch of supply and demand with an emphasis on Photovoltaic (PV) and wind turbine systems. The study incorporates mapping of renewable resources optimized capacities for different configurations of PV and wind systems for multiple sites via test case. This approach not only optimizes system size but also provides the appropriate size at which the maximum renewable energy fraction in the regional power generation mix is maximized while reducing energy costs using MATLAB's ParetoSearch algorithm. The performance of the proposed approach is tested in a realistic test site, and the results demonstrate the potential for maximizing the RE share compared to the achievable previously reported fractions. The results indicate the importance of resource mapping based on energy-demand matching rather than a quantitative assessment of anchorage sites. In the examined case study, the new assessment approach led to the identification of the best location for installing a hybrid PV / wind system with a storage system capable of achieving a nearly 100% autonomous RE system with Levelized cost of electricity of 0.05 USD/kWh. © 2013 IEEE.

Keyword:

Cost reduction Economics Mapping

Community:

  • [ 1 ] [Al-Ghussain, Loiy]Mechanical Engineering Department, University of Kentucky, Lexington; KY; 40506, United States
  • [ 2 ] [Ahmad, Adnan Darwish]Institute of Research for Technology Development (IR4TD), University of Kentucky, Lexington; KY; 40506, United States
  • [ 3 ] [Abubaker, Ahmad M.]Institute of Research for Technology Development (IR4TD), University of Kentucky, Lexington; KY; 40506, United States
  • [ 4 ] [Abujubbeh, Mohammad]Department of Electrical and Computer Engineering, Kansas State University, Manhattan; KS; 66506, United States
  • [ 5 ] [Almalaq, Abdulaziz]Department of Electrical Engineering, University of Hail, Hail; 81451, Saudi Arabia
  • [ 6 ] [Mohamed, Mohamed A.]Electrical Engineering Department, Faculty of Engineering, Minia University, Minia; 61519, Egypt
  • [ 7 ] [Mohamed, Mohamed A.]Department of Electrical Engineering, Fuzhou University, Fuzhou; 350116, China

Reprint 's Address:

Email:

Show more details

Related Keywords:

Related Article:

Source :

IEEE Access

Year: 2021

Volume: 9

Page: 58634-58651

3 . 4 7 6

JCR@2021

3 . 4 0 0

JCR@2023

ESI HC Threshold:105

JCR Journal Grade:2

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Affiliated Colleges:

Online/Total:826/10879550
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1