Indexed by:
Abstract:
Understanding the role of sintering aids during microstructure evolution is critical to the manufacture of densified SiC fibers. A variety of TEM characterization techniques are combined to investigate grain growth behavior in iron-doped SiC fibers. Ultra-large SiC grains in micron size, as the self-assembly of nano sub-grains into a similar orientation, were consistently discovered at the surface and indicative of abnormal grain growth. The growth front consisted of polycrystalline nanograins wetted by iron-rich particles, where several sub-grains were found to unify their (111) planes with a misorientation angle less than 10°, indicating grain rotation at the growth front. It is proposed that iron-rich particles form a quasi-liquid interfacial phase during sintering, which facilitates coherent attachment of grains and results in fast grain growth using neighboring irregular-shaped nanograins as building blocks. The imperfect ordered coalescence of nanograins introduces structural heterogeneities, including low angle grain boundaries and porosities. © 2020 Elsevier Ltd
Keyword:
Reprint 's Address:
Email:
Source :
Journal of the European Ceramic Society
ISSN: 0955-2219
Year: 2021
Issue: 4
Volume: 41
Page: 2306-2311
6 . 3 6 4
JCR@2021
5 . 8 0 0
JCR@2023
ESI HC Threshold:142
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count: 10
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: