Abstract:
精准的负荷预测对售电公司在电力市场中的运行起着十分重要的作用,而企业用户的负荷受多种因素的影响具有不平稳的特性,对此,提出了基于离散小波分解和粒子群优化的季节性Holt-Winters模型的短期负荷预测方法。针对原始负荷序列周期性不平稳的特性,利用离散小波变换对原始负荷序列进行分解,并采用季节性Holt-Winters模型进行预测,同时借助小波去噪和粒子群算法进一步提高预测模型的准确性。小波去噪在过滤原始数据中潜在的噪声的同时,对数据进行平滑处理,而粒子群算法能让Holt-Winters模型在训练过程找到最优参数。采用该模型来预测具有不同变化趋势的日负荷曲线,结果表明所提出的模型具有较高的预测...
Keyword:
Reprint 's Address:
Email:
Version:
Source :
电力需求侧管理
ISSN: 1009-1831
CN: 32-1592/TK
Year: 2021
Issue: 05
Volume: 23
Page: 70-75
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: