Indexed by:
Abstract:
In this paper, we propose a lightweight privacy-preserving Faster R-CNN framework (SecRCNN) for object detection in medical images. Faster R-CNN is one of the most outstanding deep learning models for object detection. Using SecRCNN, healthcare centers can efficiently complete privacy-preserving computations of Faster R-CNN via the additive secret sharing technique and edge computing. To implement SecRCNN, we design a series of interactive protocols to perform the three stages of Faster R-CNN, namely feature map extraction, region proposal and regression and classification. To improve the efficiency of SecRCNN, we improve the existing secure computation sub-protocols involved in SecRCNN, including division, exponentiation and logarithm. The newly proposed sub-protocols can dramatically reduce the number of messages exchanged during the iterative approximation process based on the coordinate rotation digital computer algorithm. Moreover, the effectiveness, efficiency and security of SecRCNN are demonstrated through comprehensive theoretical analysis and extensive experiments. The experimental findings show that the communication overhead in computing division, logarithm and exponentiation decreases to 36.19%, 73.82% and 43.37%, respectively.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY
ISSN: 1556-6013
Year: 2022
Volume: 17
Page: 69-84
6 . 8
JCR@2022
6 . 3 0 0
JCR@2023
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:61
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 50
SCOPUS Cited Count: 67
ESI Highly Cited Papers on the List: 12 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1