Indexed by:
Abstract:
X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectra, as well as the ground-state electronic/geometrical structures of the newly discovered two non-classical isomers C2-C76(NC2) and C1-C76(NC3) with their derivatives C2-C76(NC2)(CF3)14 and C1-C76(NC3)Cl24, as well as the non-IPR(isolated pentagon rule) isomer C1-#17418C76 with its embedded metal fullerene U@C1-#17418C76 have been calculated at the density functional theory (DFT) level. The electronic structure after chlorination is significantly different in the simulated X-ray spectrum. Both XPS and NEXAFS spectra reflect obvious isomer dependence, indicating that the 'fingerprint' in X-ray spectroscopy can provide an effective means for the identification of the above-mentioned fullerene isomers. Time-dependent DFT was used to simulate the ultraviolet-visible absorption spectrum of U@C1-#17418C76. The calculated results are in good agreement with the experimental consequence. This work reveals that theoretically simulated X-ray and UV-vis spectroscopy techniques can provide valuable information to help researchers explore the electronic structure of fullerenes and the identification of isomers in future experimental and theoretical fields. © 2022 American Chemical Society
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Physical Chemistry A
ISSN: 1089-5639
Year: 2022
Issue: 5
Volume: 126
Page: 742-751
2 . 9
JCR@2022
2 . 7 0 0
JCR@2023
ESI HC Threshold:74
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: