Indexed by:
Abstract:
The development of nanostructured electrodes of solid oxide cells is largely hindered by the high temperature sintering process and limited in the loading and choices of catalytic phases. Here, a nanostructured multi-phase air electrode is fabricated via facile combination of Gd0.2Ce0.8O1.9 (GDC) decorated PrBa0.8Ca0.2Co2O5+δ (PBCC) and direct assembly approach. The highly flexible decoration process and the in situ formation of multi-phases lead to the formation of intertwined core-shell type nanostructures with intimate electrode/electrolyte interface. A cell with a 40 wt% GDC decorated PBCC electrode achieves a peak power density of 1.74 W cm−2 at 750 °C and an electrolysis current density of 1.77 A cm−2 at 1.3 V with excellent durability for 200 h. The combined decoration and direct assembly approach provides a unique and general pathway to develop a new class of nanostructured air electrodes for efficient and durable solid oxide cells. © 2022 Elsevier B.V.
Keyword:
Reprint 's Address:
Email:
Source :
Applied Catalysis B: Environmental
ISSN: 0926-3373
Year: 2022
Volume: 305
2 2 . 1
JCR@2022
2 0 . 3 0 0
JCR@2023
ESI HC Threshold:74
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 25
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: